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Abstract. The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control

problem to find unknown parameters of the model. The observation data, and hence the optimal solution, may contain uncer-

tainties. A response function is considered as a functionalof the optimal solution after assimilation. Based on the second-order

adjoint techniques, the sensitivity of the response function to the observation data is studied. The gradient of the response

function is related to the solution of a non-standard problem involving the coupled system of direct and adjoint equations. The5

non-standard problem is studied, based on the Hessian of theoriginal cost function. An algorithm to compute the gradient of

the response function with respect to observations is presented. Numerical example is given for variational data assimilation

problem related to sea surface temperature for the Baltic Sea thermodynamics model.

1 Introduction

The methods of data assimilation (DA) have become an important tool for analysis of complex physical phenomena in various10

fields of science and technology. These methods allow us to combine mathematical models, data resulting from observations

and a priori information. The problems of variational DA canbe formulated as optimal control problems (e.g. Lions, 1968;

Le Dimet and Talagrand, 1986) to find unknown model parameters such as initial and/or boundary conditions, right-hand sides

in the model equations (forcing terms), distributed coefficients, based on minimization of the cost function related toobserva-

tions. A necessary optimality condition reduces an optimalcontrol problem to an optimality system which involves the model15

equations, the adjoint problem, and input data functions. The optimal solution depends on the observation data, and forfuture

forecast it is very important to study the sensitivity of theoptimal solution with respect to observation errors (Bakerand Daley,

2000).

The necessary optimality condition is related to the gradient of the original cost function, thus to study the sensitivity of

the optimal solution, one should differentiate the optimality system with respect to observations. In this case, we come to the20

so-called second-order adjoint problem (Le Dimet et al., 2002). The first studies of sensitivity of the response functions after

assimilation with the use of second-order adjoint were doneby Le Dimet et al. (1997) for variational data assimilation problem
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aimed at restoration of initial condition. The equations ofthe forecast sensitivity to observations in a four-dimensional (4D-

Var) data assimilation were derived by Daescu (2008). Basedon these results, a practical computational approach was given

by Cioaca et al. (2013) to quantify the effect of observations in 4D-Var data assimilation.

The issue of sensitivity is related to the statistical properties of the optimal solution (see Gejadze et al., 2008, 2011, 2013,

Shutyaev et al., 2012). General sensitivity analysis in variational data assimilation with respect to observations for a nonlinear5

dynamic model was given by Shutyaev et al. (2017) to control the initial-value function. The dynamic formulation of the

problem is important because it shows different implementation options (Gejadze et al., 2018).

This paper generalizes the results of Shutyaev et al. (2017)and presents the sensitivity analysis with respect to observations

in variational data assimilation aimed at restoration of unknown parameters of a dynamic model. This paper is organizedas

follows. In section 2, we give the statement of the variational DA problem for a nonlinear evolution model to estimate themodel10

parameters. In Section 3, sensitivity of the response function after assimilation with respect to observations is studied, and its

gradient is related to the solution of a non-standard problem. In Section 4 we derive an operator equation involving the Hessian

to study the solvability of the non-standard problem, and give an algorithm to compute the gradient of the response function.

Section 5 presents an application of the theory to the DA problem for a sea thermodynamics model. Numerical examples are

given in Section 6 for the Baltic Sea dynamics model. The mainresults are discussed in the Conclusions.15

2 Statement of the problem

We consider the mathematical model of a physical process that is described by the evolution problem




∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T )

ϕ
∣∣
t=0

= u,
(2.1)

whereϕ= ϕ(t) is the unknown function belonging to a Hilbert spaceX for anyt, u ∈X , F is a nonlinear operator mapping

Y × Yp into Y with Y = L2(0,T ;X), ‖ · ‖Y = (·, ·)1/2
Y , Yp is a Hilbert space (space of control parameters, or control space),20

f ∈ Y . Suppose that for givenu ∈X,f ∈ Y andλ ∈ Yp there exists a unique solutionϕ ∈ Y to (2.1). The functionλ is an

unknown model parameter.

Let us introduce the cost function

J(λ) =
1
2
(V1(λ−λb),λ−λb)Yp +

1
2
(V2(Cϕ−ϕobs),Cϕ−ϕobs)Yobs

, (2.2)

whereλb ∈ Yp is a prior (background) function,ϕobs ∈ Yobs is a prescribed function (observational data),Yobs is a Hilbert space25

(observation space),C : Y → Yobs is a linear bounded observation operator,V1 : Yp → Yp andV2 : Yobs → Yobs are symmetric

positive definite bounded operators.

Let us consider the following data assimilation problem with the aim to estimate the parameterλ: for givenu ∈X,f ∈ Y ,

find λ ∈ Yp andϕ ∈ Y such that they satisfy (2.1), and on the set of solutions to (2.1), the functionalJ(λ) takes the minimum
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value, i.e.




∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T )

ϕ
∣∣
t=0

= u,

J(λ) = inf
v∈Yp

J(v).

(2.3)

We suppose that the solution of (2.3) exists. Let us note thatthe solvability of the parameter estimation problems (or identi-

fiability) has been addressed, e.g., in Chavent (1983), Navon (1998). To derive the optimality system, we assume the solution

ϕ and the operatorF (ϕ,λ) in (2.1)–(2.2) are regular enough, and forv ∈ Yp find the gradient of the functionalJ with respect5

to λ:

J ′(λ)v = (V1(λ−λb),v)Yp + (V2(Cϕ−ϕobs),Cφ)Yobs
= (V1(λ−λb),v)Yp + (C∗V2(Cϕ−ϕobs),φ)Y , (2.4)

whereφ is the solution to the problem:




∂φ
∂t = F ′

ϕ(ϕ,λ)φ+F ′
λ(ϕ,λ)v,

φ
∣∣
t=0

= 0,
(2.5)

HereF ′
ϕ(ϕ,λ) : Y → Y, F ′

λ(ϕ,λ) : Yp → Y are the Frechet derivatives ofF (Marchuk et al., 1996) with respect toϕ andλ,10

correspondingly, andC∗ is the adjoint operator toC defined by(Cϕ,ψ)Yobs
= (ϕ,C∗ψ)Y , ϕ ∈ Y,ψ ∈ Yobs.

Let us consider the adjoint operator(F ′
ϕ(ϕ,λ))∗ : Y → Y and introduce the adjoint problem:





∂ϕ∗

∂t
+ (F ′

ϕ(ϕ,λ))∗ϕ∗ = C∗V2(Cϕ−ϕobs),

ϕ∗
∣∣
t=T

= 0.
(2.6)

Then (2.4) with (2.5) and (2.6) gives

J ′(λ)v = (V1(λ−λb),v)Yp − (ϕ∗,F ′
λ(ϕ,λ)v)Y = (V1(λ−λb),v)Yp − ((F ′

λ(ϕ,λ))∗ϕ∗,v)Yp , (2.7)15

where(F ′
λ(ϕ,λ))∗ : Y → Yp is the adjoint operator toF ′

λ(ϕ,λ). Therefore, the gradient ofJ is defined by

J ′(λ) = V1(λ−λb)− (F ′
λ(ϕ,λ))∗ϕ∗.

From (2.4)–(2.7) we get the optimality system (the necessary optimality conditions, Lions, 1968):




∂ϕ
∂t

= F (ϕ,λ)+ f, t ∈ (0,T ),

ϕ
∣∣
t=0

= u,
(2.8)





∂ϕ∗

∂t
+ (F ′

ϕ(ϕ,λ))∗ϕ∗ = C∗V2(Cϕ−ϕobs),

ϕ∗
∣∣
t=T

= 0,
(2.9)

20

V1(λ−λb)− (F ′
λ(ϕ,λ))∗ϕ∗ = 0. (2.10)
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We assume that the system (2.8)–(2.10) has a unique solution. The system (2.8)–(2.10) may be considered as a generalized

modelA(U) = 0 with the state variableU = (ϕ,ϕ∗,λ), and it contains all the available information. In what follows we study

the problem of the sensitivity of functionals of the optimalsolution to the observation data.

If the observation operatorC is nonlinear, i.e.Cϕ= C(ϕ), then the right-hand side of the adjoint equation (2.9) contains

(C′
ϕ)∗ instead ofC∗ and all the analysis presented below is similar.5

3 Sensitivity of functionals after assimilation

In geophysical applications the observation data cannot bemeasured precisely, therefore, it is important to be able toestimate

the impact of uncertainties in observations on the outputs of the model after assimilation.

Let us introduce a response functionG(ϕ,λ), which is supposed to be a real-valued function and can be considered as a

functional onY ×Yp. We are interested in the sensitivity ofG with respect toϕobs, with ϕ andλ obtained from the optimality10

system (2.8)–(2.10). By definition, the sensitivity is defined by the gradient ofG with respect toϕobs:

dG

dϕobs
=
∂G

∂ϕ

∂ϕ

∂ϕobs
+
∂G

∂λ

∂λ

∂ϕobs
. (3.1)

If δϕobs is a perturbation onϕobs, we get from the optimality system:




∂δϕ
∂t

= F ′
ϕ(ϕ,λ)δϕ+F ′

λ(ϕ,λ)δλ,

δϕ
∣∣
t=0

= 0,
(3.2)

15 



−∂δϕ
∗

∂t
− (F ′

ϕ(ϕ,λ))∗δϕ∗− (F ′′
ϕϕ(ϕ,λ)δϕ)∗ϕ∗ = (F ′′

ϕλ(ϕ,λ)δλ)∗ϕ∗−C∗V2(Cδϕ− δϕobs),

δϕ∗
∣∣
t=T

= 0,
(3.3)

V1δλ− (F ′′
λϕ(ϕ,λ)δϕ)∗ϕ∗− (F ′′

λλ(ϕ,λ)δλ)∗ϕ∗− (F ′
λ(ϕ,λ))∗δϕ∗ = 0, (3.4)

and
(

dG

dϕobs
, δϕobs

)

Yobs

=
(
∂G

∂ϕ
,δϕ

)

Y

+
(
∂G

∂λ
,δλ

)

Yp

, (3.5)20

whereδϕ, δϕ∗ andδλ are the Ĝateaux derivatives ofϕ, ϕ∗ andλ in the directionδϕobs (for example,δϕ= ∂ϕ
∂ϕobs

δϕobs).

To compute the gradient∇ϕobs
G(ϕ,λ), let us introduce three adjoint variablesP1 ∈ Y , P2 ∈ Y andP3 ∈ Yp. By taking the

inner product of (3.2) byP1, (3.3) byP2 and of (3.4) byP3 and adding them, we obtain:
(
∂δϕ

∂t
−F ′

ϕ(ϕ,λ)δϕ−F ′
λ(ϕ,λ)δλ,P1

)

Y

+
(
−∂δϕ

∗

∂t
− (F ′

ϕ(ϕ,λ))∗δϕ∗− (F ′′
ϕϕ(ϕ,λ)δϕ)∗ϕ∗−

−(F ′′
ϕλ(ϕ,λ)δλ)∗ϕ∗ +C∗V2(Cδϕ− δϕobs),P2

)

Y

+
(
V1δλ− (F ′′

λϕ(ϕ,λ)δϕ)∗ϕ∗− (F ′′
λλ(ϕ,λ)δλ)∗ϕ∗−

−(F ′
λ(ϕ,λ))∗δϕ∗,P3

)

Yp

= 0.

4
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Then, using integration by parts and adjoint operators, we get
(
δϕ,−∂P1

∂t
− (F ′

ϕ(ϕ,λ))∗P1− (F ′′
ϕϕ(ϕ,λ)P2)∗ϕ∗− (F ′′

λϕ(ϕ,λ)P3)∗ϕ∗ +C∗V2CP2

)

Y

+
(
δϕ
∣∣
t=T

,P1

∣∣
t=T

)

X

+

+
(
δϕ∗,

∂P2

∂t
−F ′

ϕ(ϕ,λ)P2 −F ′
λ(ϕ,λ)P3

)

Y

+
(
δϕ∗

∣∣
t=0

,P2

∣∣
t=0

)

X

+
(
δλ,V1P3− (F ′′

ϕλ(ϕ,λ)P2)∗ϕ∗−

−(F ′′
λλ(ϕ,λ)P3)∗ϕ∗− (F ′

λ(ϕ,λ))∗P1

)

Yp

−
(
δϕobs,V2CP2

)

Yobs

= 0. (3.6)

Here we put

−∂P1

∂t
− (F ′

ϕ(ϕ,λ))∗P1− (F ′′
ϕϕ(ϕ,λ)P2)∗ϕ∗− (F ′′

λϕ(ϕ,λ)P3)∗ϕ∗ +C∗V2CP2 =
∂G

∂ϕ
,

and

V1P3− (F ′′
ϕλ(ϕ,λ)P2)∗ϕ∗− (F ′′

λλ(ϕ,λ)P3)∗ϕ∗− (F ′
λ(ϕ,λ))∗P1 =

∂G

∂λ
, P1

∣∣
t=T

= 0,

∂P2

∂t
−F ′

ϕ(ϕ,λ)P2 −F ′
λ(ϕ,λ)P3 = 0, P2

∣∣
t=0

= 0.

Thus, ifP1,P2,P3 are the solutions of the following system of equations




−∂P1
∂t

− (F ′
ϕ(ϕ,λ))∗P1− (F ′′

ϕϕ(ϕ,λ)P2)∗ϕ∗ = (F ′′
λϕ(ϕ,λ)P3)∗ϕ∗−C∗V2CP2 + ∂G

∂ϕ
,

P1

∣∣
t=T

= 0,
(3.7)

5 



∂P2
∂t

−F ′
ϕ(ϕ,λ)P2 −F ′

λ(ϕ,λ)P3 = 0, t ∈ (0,T )

P2

∣∣
t=0

= 0,
(3.8)

V1P3− (F ′′
ϕλ(ϕ,λ)P2)∗ϕ∗− (F ′′

λλ(ϕ,λ)P3)∗ϕ∗− (F ′
λ(ϕ,λ))∗P1 =

∂G

∂λ
, (3.9)

then from (3.6) we get (
∂G

∂ϕ
,δϕ

)

Y

+
(
∂G

∂λ
,δλ

)

Yp

=
(
δϕobs,V2CP2

)

Yobs

,

and due to (3.5) the gradient ofG is given by

dG

dϕobs
= V2CP2. (3.10)10

We get a coupled system of two differential equations (3.7) and (3.8) of the first order with respect to time, and (3.9). To

study this non-standard problem (3.7)–(3.9), we reduce it to a single operator equation involving the Hessian of the original

cost function.

5
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4 Operator equation via Hessian and response function gradient

Let us denote the auxiliary variablev = P3 and rewrite the non-standard problem (3.7)–(3.9) in an equivalent form:




∂P2
∂t

−F ′
ϕ(ϕ,λ)P2 = F ′

λ(ϕ,λ)v,

P2

∣∣
t=0

= 0,
(4.1)





−∂P1
∂t

− (F ′
ϕ(ϕ,λ))∗P1− (F ′′

ϕϕ(ϕ,λ)P2)∗ϕ∗ = (F ′′
λϕ(ϕ,λ)v)∗ϕ∗−C∗V2CP2 + ∂G

∂ϕ
,

P1

∣∣
t=T

= 0,
(4.2)5

V1v− (F ′′
ϕλ(ϕ,λ)P2)∗ϕ∗− (F ′′

λλ(ϕ,λ)v)∗ϕ∗− (F ′
λ(ϕ,λ))∗P1 =

∂G

∂λ
, (4.3)

Here we have three unknowns:v ∈ Yp, P1,P2 ∈ Y . Let us write (4.1)–(4.3) in the form of an operator eqution for v. We define

the operatorH by the successive solution of the following problems:




∂φ
∂t
−F ′

ϕ(ϕ,λ)φ = F ′
λ(ϕ,λ)w, t ∈ (0,T )

φ
∣∣
t=0

= 0,
(4.4)10





−∂φ
∗

∂t
− (F ′

ϕ(ϕ,λ))∗φ∗− (F ′′
ϕϕ(ϕ,λ)φ)∗ϕ∗ = (F ′′

λϕ(ϕ,λ)w)∗ϕ∗−C∗V2Cφ,

φ∗
∣∣
t=T

= 0,
(4.5)

Hw = V1w− (F ′′
ϕλ(ϕ,λ)φ)∗ϕ∗− (F ′′

λλ(ϕ,λ)w)∗ϕ∗− (F ′
λ(ϕ,λ))∗φ∗. (4.6)

Hereλ,ϕ andϕ∗ are the solutions of the optimality system (2.8)–(2.10). Then (4.1)–(4.3) is equivalent to the following equation15

in Yp:

Hv = F (4.7)

with the right-hand sideF defined by

F =
∂G

∂λ
+ (F ′

λ(ϕ,λ))∗φ̃∗, (4.8)

whereφ̃∗ is the solution to the adjoint problem:20





−∂φ̃
∗

∂t
− (F ′

ϕ(ϕ,λ))∗φ̃∗ = ∂G
∂ϕ

, t ∈ (0,T )

φ̃∗
∣∣
t=T

= 0.
(4.9)

It is easily seen that the operatorH defined by (4.4)–(4.6) is the Hessian of the original functional J considered on the

optimal solutionλ of the problem (2.8)–(2.10):J ′′(λ) =H. Under the assumption thatH is positive definite, the operator

equation (4.7) is correctly and everywhere solvable inYp (Vainberg, 1964), i.e. for everyF there exists a unique solution

v ∈ Yp and

‖v‖Yp ≤ c‖F‖Yp , c= const > 0.

6
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Therefore, under the assumption thatJ ′′(λ) is positive definite on the optimal solution, the non-standard problem (3.7)–(3.9)

has a unique solutionP1,P2 ∈ Y,P3 ∈ Yp.

Based on the above consideration, we can formulate the following algorithm to compute the gradient of the response function

G:

1) For ∂G
∂λ

∈ Yp,
∂G
∂ϕ

∈ Y solve the adjoint problem5





−∂φ̃
∗

∂t − (F ′
ϕ(ϕ,λ))∗φ̃∗ = ∂G

∂ϕ ,

φ̃∗
∣∣
t=T

= 0
(4.10)

and put

F =
∂G

∂λ
+ (F ′

λ(ϕ,λ))∗φ̃∗.

2) Findv by solving

Hv = F

with the Hessian of the original functionalJ defined by (4.4)–(4.6).

3) Solve the direct problem




∂P2
∂t −F

′
ϕ(ϕ,λ)P2 = F ′

ϕ(ϕ,λ)v, t ∈ (0,T )

P2

∣∣
t=0

= 0.
(4.11)

4) Compute the gradient of the response function as10

dG

dϕobs
= V2CP2. (4.12)

Remark 1. In the above consideration, to show the solvability, we haveassumed that the direct and adjoint tangent linear

problems of the form 



∂φ
∂t
−F ′

ϕ(ϕ,λ)φ = f, t ∈ (0,T )

φ
∣∣
t=0

= 0,




−∂φ
∗

∂t − (F ′
ϕ(ϕ,λ))∗φ∗ = g, t ∈ (0,T )

φ∗
∣∣
t=T

= 0

with f,g ∈ Y have the unique solutionsφ,φ∗ ∈ Y .

Formula (4.12) allows us to estimate the sensitivity of the functionals related to the optimal solution after assimilation, with

respect to observation data. As an application, we considerbelow a variational data assimilation problem for a sea thermody-15

namics model.

7
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5 Data assimilation problem for a sea thermodynamics model

Consider the sea thermodynamics problem in the form (Marchuk et al., 1987):

Tt + (Ū,Grad)T −Div(âT ·Grad T ) = fT in D× (t0, t1),

T = T0 for t= t0 in D,

−νT
∂T

∂z
=Q onΓS × (t0, t1),

∂T

∂n
= 0 onΓw,c× (t0, t1),

Ū (−)
n T +

∂T

∂n
= Ū (−)

n dT +QT onΓw,op× (t0, t1),

∂T

∂n
= 0 onΓH × (t0, t1), (5.1)

whereT = T (x,y,z, t) is an unknown temperature function,t ∈ (t0, t1), (x,y,z) ∈D = Ω× (0,H), Ω⊂R2,H =H(x,y) is

the function of the bottom releif,Q=Q(x,y,t) is the total heat flux,̄U = (u,v,w), âT = diag((aT )ii), (aT )11 = (aT )22 = µT ,5

(aT )33 = νT , fT = fT (x,y,z, t) are given functions. The boundary of the domainΓ≡ ∂D is represented as a union of four

disjoint partsΓS , Γw,op, Γw,c, ΓH , whereΓS = Ω (the unperturbed sea surface),Γw,op is the liquid (open) part of vertical

lateral boundary,Γw,c is the solid part of the vertical lateral boundary,ΓH is the sea bottom. The other notations and a detailed

description of the problem statement can be found in Agoshkov et al. (2008).

Problem (5.1) can be written in the form of an operator equation:10

Tt +LT = F +BQ, t ∈ (t0, t1),

T = T0, t= t0,
(5.2)

where the equality is understood in the weak sense, namely,

(Tt, T̂ )+ (LT,T̂ ) = F(T̂ )+ (BQ,T̂ ) ∀T̂ ∈W 1
2 (D), (5.3)

in this caseL, F ,B are defined by the following relations:

(LT,T̂ )≡
∫

D

(−TDiv(Ū T̂ ))dD+
∫

Γw,op

Ū (+)
n T T̂dΓ +

∫

D

âT Grad(T ) ·Grad(T̂ )dD,

F(T̂ ) =
∫

Γw,op

(QT + Ū (−)
n dT )T̂ dT +

∫

D

fT T̂ dD, (Tt, T̂ ) =
∫

D

TtT̂ dD, (BQ,T̂ ) =
∫

Ω

QT̂
∣∣
z=0

dΩ,

and the functionŝaT , QT , fT , Q are such that equality (5.3) makes sense. The properties of the operatorL were studied by

Agoshkov et al. (2008).15

Consider the data assimilation problem for the sea surface temperature (see Agoshkov et al., 2008). Suppose that the function

Q ∈ L2(Ω×(t0, t1)) is unknown in problem (5.1). Let alsoTobs(x,y,t) be the function on̄Ω≡ Ω∪∂Ω obtained fort ∈ (t0, t1)

8
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by processing the observation data, and this function in itsphysical sense is an approximation to the surface temperature

function onΩ, i.e. toT
∣∣∣
z=0

. We suppose thatTobs ∈ L2(Ω×(t0, t1)), but the functionTobs may not possess greater smoothness

and hence it cannot be used for the boundary condition onΓS . We admit the case whenTobs is defined only on some subset of

Ω× (t0, t1) and denote the indicator (characteristic) function of thisset bym0. For definiteness sake, we assume thatTobs is

zero outside this subset.5

Consider the data assimilation problem for the surface temperature in the following form: findT andQ such that





Tt +LT = F +BQ in D× (t0, t1),

T = T0, t= t0

J(Q) = inf
v
J(v),

(5.4)

where

J(Q) =
α

2

t1∫

t0

∫

Ω

|Q−Q(0)|2dΩdt+ 1
2

t1∫

t0

∫

Ω

m0|T
∣∣∣
z=0

−Tobs|2dΩdt, (5.5)

andQ(0) =Q(0)(x,y,t) is a given function,α= const > 0.10

For α > 0 this variational data assimilation problem has a unique solution. The existence of the optimal solution follows

from the classic results of the theory of optimal control problems (Lions, 1968), because it is easy to show that the solution

to problem (5.1) continuously depends on the fluxQ (a priori estimates are valid in the corresponding functional spaces), the

functionalJ is weakly lower semicontinuous, and the space of admissiblecontrolsL2(Ω× (t0, t1)) is weakly compact.

Forα= 0 the problem does not always have a solution, but, as was shownby Agoshkov et al. (2008), there is unique and15

dense solvability, which allows one to construct a sequenceof regularized solutions minimizing the functional.

The optimality system determining the solution of the formulated variational data assimilation problem according to the

necessary conditiongradJ = 0 has the form:

Tt +LT = F +BQ in D× (t0, t1),

T = T0, t= t0,
(5.6)

20

−(T ∗)t +L∗T ∗ =Bm0(Tobs−T ) in D× (t0, t1),

T ∗ = 0, t= t1,
(5.7)

α(Q−Q(0))−T ∗ = 0 on Ω× (t0, t1), (5.8)

whereL∗ is the operator adjoint toL.

Here the boundary-value functionQ plays the role ofλ from Section 2,ϕ= T , the operatorF has the formF (T,Q) =25

−LT +BQ, andF ′
T =−L,F ′

Q =B. Since the operatorF (T,Q) is bilinear in this case, the HessianH acting on someψ ∈

9
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L2(Ω× (t0, t1)) is defined by the successive solution of the following problems:




∂φ
∂t

+Lφ = Bψ, t ∈ (t0, t1)

φ
∣∣
t=t0

= 0,
(5.9)





−∂φ
∗

∂t
+L∗φ∗ = −Bm0φ, t ∈ (t0, t1)

φ∗
∣∣
t=t1

= 0,
(5.10)

5

Hψ = αψ−B∗φ∗. (5.11)

To illustrate the above-presented theory, we consider the problem of sensitivity of functionals of the optimal solutionQ to

the observationsTobs. Let us introduce the following functional (response function):

G(T ) =

t1∫

t0

dt

∫

Ω

k(x,y,t)T (x,y,0, t)dΩ, (5.12)

wherek(x,y,t) is a weight function related to the temperature field on the sea surfacez = 0. For example, if we are interested10

in the mean temperature of a specific region of the seaω for z = 0 in the interval̄t− τ ≤ t≤ t̄, then ask we take the function

k(x,y,t) =





1
/

(τmesω) if (x,y) ∈ ω, t̄− τ ≤ t≤ t̄

0 else,
(5.13)

where mesω denotes the area of the regionω. Thus, the functional (5.12) is written in the form:

G(T ) =
1
τ

t̄∫

t̄−τ

dt

(
1

mesω

∫

ω

T (x,y,0, t)dΩ

)
. (5.14)

Formula (5.14) represents the mean temperature averaged over the time interval̄t− τ ≤ t≤ t̄ for a given regionω. The func-15

tionals of this type are of most interest in the theory of climate change (Marchuk, 1995; Marchuk et al., 1996).

In our notations the functional (5.12) may be written as

G(T ) =

t1∫

t0

(Bk,T )dt= (Bk,T )Y , Y = L2(D× (t0, t1)).

We are interested in the sensitivity of the functionalG(T ), obtained forT after data assimilation, with respect to the obser-

vation functionTobs.

By definition, the sensitivity is given by the gradient ofG with respect toTobs:

dG

dTobs
=
∂G

∂T

∂T

∂Tobs
. (5.15)20

Since∂G
∂T

=Bk, then according to the theory presented in Section 4, to compute the gradient (5.15) we need to perform the

following steps:

10
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1) Fork defined by (5.13) solve the adjoint problem




−∂φ̃
∗

∂t +L∗φ̃∗ = Bk, t ∈ (t0, t1)

φ̃∗
∣∣
t=t1

= 0
(5.16)

and putΦ =B∗φ̃∗.

2) Findχ by solvingHχ= Φ with the Hessian defined by (5.9)–(5.11).

3) Solve the direct problem5




∂P2
∂t

+LP2 = Bχ, t ∈ (t0, t1)

P2

∣∣
t=t0

= 0.
(5.17)

4) Compute the gradient of the response function as

dG

dTobs
=m0P2

∣∣
z=0

. (5.18)

Formula (5.18) allows us to estimate the sensitivity of the functionals related to the mean temperature after data assimilation,

with respect to the observations on the sea surface.10

6 Numerical example for the Baltic Sea dynamics model

The numerical experiments have been performed using the three-dimensional numerical model of the Baltic Sea hydrother-

modynamics developed at the INM RAS on the base of the splitting method (Zalesny et al., 2017) and supplied with the

assimilation procedure (Agoshkov et al., 2008) for the surface temperatureTobs with the aim to reconstruct the heat fluxesQ.

The object of simulation is the Baltic Sea water area. The parameters of the considered domain and its geographic coordinates15

can be described in the following way:σ-grid is336×394×25 (the latitude, longitude, and depth, respectively). The first point

of the "grid C" (Zalesny et al., 2017) has the coordinates9.406◦ E and53.64◦ N. The mesh sizes inx andy are constant and

equal to 0.0625 and 0.03125 degrees. The time step is∆t= 5 minutes.

The Baltic Sea daily-averaged nighttime surface temperature data were used forTobs. These are the data of the Danish Mete-

orological Institute based on measurements of radiometers(AVHRR, AATSR and AMSRE) and spectroradiometers (SEVIRI20

and MODIS) (Karagali, 2012). Data interpolation algorithms were used (Zakharova et al., 2013) to convert observationson

computational grid of the numerical model of the Baltic Sea thermodynamics. The mean climatic flux obtained from the NCEP

(National Center for Environmental Prediction) reanalysis was taken forQ(0).

Using the hydrothermodynamics model mentioned above, which is supplied with the assimilation procedure for the surface

temperatureTobs, we have performed calculations for the Baltic Sea area where the assimilation algorithm worked only at25

certain time momentst0; in this caset1 = t0 + ∆t. The aim of the experiment was the numerical study of the sensitivity of

functionals of the optimal solutionQ to observation errors in the interval(t0, t1).

Implementing the assimilation procedure, we considered a system of form (5.6)–(5.8), where (5.6)–(5.7) mean the finite-

dimensional analogues of the corresponding problems (Agoshkov et al., 2008).

11
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Let us present some results of numerical experiments.

The calculation results fort0 = 50 hours (600 time steps for the model) are presented in Fig.1 showing the gradient of the

functionalG(T ) defined by (5.14) and related to the mean temperature after data assimilation, with respect to the observations

on the sea surface, according to (5.16)– (5.18). Hereω = Ω, τ = ∆t, t̄= t1, α= 10−5.

Figure 1. The gradient of the functionalG(T )

We can see the sub-areas (in red) in which the functionalG(T ) is most sensitive to errors in the observations during assim-5

ilation. The largest values of the gradient ofG(T ) correspond to the pointsx,y lying near the regions with a small depth (cf.

sea topography, Fig.2).

The above studies allow us to solve the problem of the definition of sea sub-areas in which the functional of the optimal

solution is most sensitive to errors in the observations during variational data assimilation, when the error values are not apriori

known.10

7 Conclusions

In this paper we have considered numerical algorithms to study the sensitivity of functionals of the optimal solution ofvari-

ational data assimilation problem aimed at the reconstruction of unknown parameters of the model. The optimal solution

obtained as a result of assimilation depends on the observations that may contain uncertainties. Computing the gradient of

the functionals with respect to observations reduces to thesolution of a non-standard problem which is a coupled systemin-15

volving direct and adjoint equations with mutually dependent variables. Solvability of the non-standard problem is related to

the properties of the Hessian of the original cost function.An algorithm developed to compute the gradient of the response

12
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Figure 2. Baltic Sea topography [m]

function is based on the second-order adjoint techniques. Numerical example for variational data assimilation problem related

to sea surface temperature for the Baltic Sea thermodynamics model demonstrates the result of the gradient computationof the

response function associated with the mean surface temperature. The presented algorithm may be used to determine the sea

sub-areas in which the functionals of the optimal solution are most sensitive to errors in the observations during variational

data assimilation.5
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