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Abstract. The problem of variational data assimilation for a nonlineeolution model is formulated as an optimal control
problem to find unknown parameters of the model. The obgervdata, and hence the optimal solution, may contain uncer-
tainties. A response function is considered as a functiointile optimal solution after assimilation. Based on theseeorder
adjoint techniques, the sensitivity of the response famctd the observation data is studied. The gradient of theorese
function is related to the solution of a non-standard pnakile/olving the coupled system of direct and adjoint equegid he
non-standard problem is studied, based on the Hessian ofitgjinal cost function. An algorithm to compute the gradieh

the response function with respect to observations is ptedeNumerical example is given for variational data agation
problem related to sea surface temperature for the Baladl8srmodynamics model.

1 Introduction

The methods of data assimilation (DA) have become an impbttdal for analysis of complex physical phenomena in vagiou
fields of science and technology. These methods allow usrtdizee mathematical models, data resulting from obsematio
and a priori information. The problems of variational DA da@ formulated as optimal control problems (e.g. Lions, 1968
Le Dimet and Talagrand, 1986) to find unknown model pararaetgch as initial and/or boundary conditions, right-haddsi
in the model equations (forcing terms), distributed cogffits, based on minimization of the cost function relatedkserva-
tions. A necessary optimality condition reduces an opticoalrol problem to an optimality system which involves thedel
equations, the adjoint problem, and input data functiohg. dptimal solution depends on the observation data, arfdtiore
forecast it is very important to study the sensitivity of tgimal solution with respect to observation errors (Bak®i Daley,
2000).

The necessary optimality condition is related to the gnatdid the original cost function, thus to study the sendifivif
the optimal solution, one should differentiate the optityadystem with respect to observations. In this case, weectinthe
so-called second-order adjoint problem (Le Dimet et alQ20The first studies of sensitivity of the response funwiafter
assimilation with the use of second-order adjoint were dyniee Dimet et al. (1997) for variational data assimilationlgem
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aimed at restoration of initial condition. The equationgha forecast sensitivity to observations in a four-dimenal (4D-
Var) data assimilation were derived by Daescu (2008). Baseithese results, a practical computational approach was gi
by Cioaca et al. (2013) to quantify the effect of observatimn4D-Var data assimilation.

The issue of sensitivity is related to the statistical prdpe of the optimal solution (see Gejadze et al., 2008, 20013,
Shutyaev et al., 2012). General sensitivity analysis imat@nal data assimilation with respect to observatiomsafoonlinear
dynamic model was given by Shutyaev et al. (2017) to conhrelibitial-value function. The dynamic formulation of the
problem is important because it shows different implemi@ntaoptions (Gejadze et al., 2018).

This paper generalizes the results of Shutyaev et al. (28 presents the sensitivity analysis with respect to eatens
in variational data assimilation aimed at restoration dinown parameters of a dynamic model. This paper is orgaraged
follows. In section 2, we give the statement of the variadid®A problem for a nonlinear evolution model to estimaterticzlel
parameters. In Section 3, sensitivity of the response fometfter assimilation with respect to observations is igtddand its
gradient is related to the solution of a non-standard prable Section 4 we derive an operator equation involving tkeedian
to study the solvability of the non-standard problem, ané gin algorithm to compute the gradient of the responseifumct
Section 5 presents an application of the theory to the DAlpralfor a sea thermodynamics model. Numerical examples are
given in Section 6 for the Baltic Sea dynamics model. The mesnlts are discussed in the Conclusions.

2 Statement of the problem

We consider the mathematical model of a physical proces$sstdascribed by the evolution problem

%‘f = F(e, N +f, te(0,T) 2.1)
@’t:o = U

wherep = ¢(t) is the unknown function belonging to a Hilbert spatdor anyt, © € X, F' is a nonlinear operator mapping
Y xY,intoY withY = Ly(0, 75 X), || - ||y = (~7-)§/2, Y, is a Hilbert space (space of control parameters, or conpiame),
f €Y. Suppose that for given € X, f € Y and\ € Y), there exists a unique solutigne Y to (2.1). The functiom\ is an
unknown model parameter.

Let us introduce the cost function
1 1
JA) = S (VA= 2), A = Xy, + 5 (Va(Cp = Pobs), Cp = Pobs ) Yo (2.2)

where), € Y), is a prior (background) functiog.,s € Yo, is a prescribed function (observational dad), is a Hilbert space
(observation spacef; : Y — Y, is a linear bounded observation operaiqr; Y, — Y, andV; : Y, — Yo, are symmetric
positive definite bounded operators.

Let us consider the following data assimilation problenmhviite aim to estimate the parameleifor givenu € X, f €Y,
find A € Y, andy € Y such that they satisfy (2.1), and on the set of solutions.th)(the functionall(\) takes the minimum
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value, i.e.

% - F(@a)\)+fa t6(07T)

('0|t:0 = U

JA) = Uiél}f/p J(v).

2.3)

We suppose that the solution of (2.3) exists. Let us notetligasolvability of the parameter estimation problems (eniit

fiability) has been addressed, e.g., in Chavent (1983), N&1898). To derive the optimality system, we assume thetisolu

¢ and the operataF (¢, \) in (2.1)—(2.2) are regular enough, and fog Y, find the gradient of the functional with respect

to\:
T (Mo =V1(A=2),0)y, + (Va(Co = Pobs ), CO)vy, = (Vi(A = X),0)y,, + (C*V2(Co = Pobs) Oy
whereg is the solution to the problem:

{ 90— FL(p.Né+ Filp. N\,
(b‘t:() = 07

(2.4)

(2.5)

Here I, (p,\) : Y =Y, F{(p,)\) : Y, — Y are the Frechet derivatives &f (Marchuk et al., 1996) with respect {pand ),

correspondingly, and™ is the adjoint operator t6' defined by(Cp,v)y,,. = (p,C*Y)y, ¢ € Y, ¢ € Yops.

o

Let us consider the adjoint operatdr;, (¢,A))* : Y — Y and introduce the adjoint problem:

a * *, % *
F + (FL(e, )¢ C*Va(Co = pobs),
<p*|t:T = 0.

Then (2.4) with (2.5) and (2.6) gives
J' (N =(Vi(A= X))y, — (¢, FX (@, N)v)y = (Vi(A = Xo),0)y, — (FX(9,2)"¢",v)y, ,
where(F}(¢,A))* : Y — Y, is the adjoint operator t&’; (¢, \). Therefore, the gradient of is defined by
J'(N) =Vi(A =) = (Fi(0,N)"¢".
From (2.4)—(2.7) we get the optimality system (the necgsstimality conditions, Lions, 1968):

{ % — Flen+f te(.D)

90’t:0 = U

a * *, ok *
©lop = 0,

Vi(A=X) = (FX (9, M) "™ = 0.

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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We assume that the system (2.8)—(2.10) has a unique saltiti@system (2.8)—(2.10) may be considered as a generalized

model A(U) = 0 with the state variabl& = (¢, ¢*, \), and it contains all the available information. In what éo¥s we study
the problem of the sensitivity of functionals of the optirsalution to the observation data.

If the observation operatd? is nonlinear, i.eCyp = C(yp), then the right-hand side of the adjoint equation (2.9) aimst
(C7,)* instead ofC* and all the analysis presented below is similar.

3 Sensitivity of functionals after assimilation

In geophysical applications the observation data cannatédmsured precisely, therefore, it is important to be abéstonate
the impact of uncertainties in observations on the outplitseomodel after assimilation.

Let us introduce a response functi6tip, \), which is supposed to be a real-valued function and can bsidered as a
functional onY” x Y,,. We are interested in the sensitivity Gfwith respect tap,s, with ¢ and obtained from the optimality
system (2.8)—(2.10). By definition, the sensitivity is defirby the gradient aff with respect tap,ps:

dG 090G 9p  O0G O\

_ 7~ - . 3.1
d‘pobs 5’4,0 a<;Dobs a>\ a990bs ( )
If dpops iS a perturbation op,;,s, Wwe get from the optimality system:
8_5(12 — / /
&P’t:o =0
=g — (FL(0,N) 00" — (FJ, (0, \)dp) 0" = (F (0, A)0N) " — C*Va(Cop — pobs), (33)
5 |, _p = 0,
ViOA = (F3, (0. A)30) 9™ = (F\ (9, NN 9™ — (F3 (9, ) "™ = 0, (3:4)
and
dG oG oG
———, 0Qobs =(—=—,0 —, 0N 3.5
(d%bs’ “”‘)Ym (aso ¢>y+<ax )Yp (2:5)

wheredp, do* ando )\ are the Giteaux derivatives ab, o* and\ in the directiomp,;,s (for examplejp = 3210!,5 0Pobs)-

To compute the gradient,,,,, G(¢, ), let us introduce three adjoint variablBs € Y, P, € Y andP; € Y. By taking the
inner product of (3.2) by’ (3.3) by, and of (3.4) byP; and adding them, we obtain:

85 - * * * %
<—a;0 —F;(%A)M—Fi(%)\)&\fl) + (———(FL(%/\)) 09" — (F, (0, \) o) " —
, y ,

—(FJ\ (@, A)oN) ™ + C*Va(Cop — 5<pobs),P2> + (Vuﬂ — (FX, (0, M)00)" " = (Fi\ (0, A\)ON) 0" —
Y

—<F;<¢,A>>*5¢*7P3) 0.
Yp
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Then, using integration by parts and adjoint operators, &te g
aPl / * 11 * ok 11 * ok *
6907_W_(Fg0(907/\)) Pl_(FLpr(<p7A)P2) ¥ _(FAgp((p7A)P3) ¥ +CVLCP, + 6<p|t:T’P1|t:T +
Y X

+(6<p 78—;_Fg;(@aA)PQ_F/((@aA)P%)Y_'— (64)0 ’t—O’PQIt—O>X+ (5A7V1P3_(FSZA(<)D7/\)P2) Y -

~ERE NP~ (BN P )~ (SeunTeCRs) = (3.6)
Yp Yobs
Here we put
—1 ~ Fp@ ) P = (P (e N P2) 0" = (B (0 N Pa)" " + CVaCP = 2,
and
i o . oG
ViPs = (FL (0 N B) 0" = (FA (0. N P3) 9" = (F (9. )" P = 55, Pif,_p =0,

OP:

i~ Fel@ NP = Fi(9. )Py =0, Paf_,=0.
Thus, if Py, P, P3 are the solutions of the following system of equations
{ =7 — (Fo (0, ) P = (FL (0, N P2)* ™ = (FY, (N Ps) " = C*VaCPy + T35 3.7)

Py |t:T = 0
%_FQL(@’A)P2_F/I\(SO7)‘)P3 = Ou t€(07T) (3 8)
P2‘t:0 = 0
oG

ViPs — (F5 (0, N P2) 0" — (FX\ (9, ) P3) 0" — (FX (9, \)" Pr = R (3.9)
then from (3.6) we get

oG oG

_75S0> + <_76)‘) = (69001757‘/2CP2> 9

(890 Y OA Y, Yobs

and due to (3.5) the gradient 6fis given by
diG:, =20 (3.10)

We get a coupled system of two differential equations (3rd) @.8) of the first order with respect to time, and (3.9). To
study this non-standard problem (3.7)—(3.9), we reduae d $ingle operator equation involving the Hessian of thgioai
cost function.
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4 Operator equation via Hessian and response function gradient

Let us denote the auxiliary variable= P; and rewrite the non-standard problem (3.7)—(3.9) in anvademt form:

P
O~ Fie NP = Filp A s
P,_, = 0,
ap * *, % * %k *
~ G~ FLe ) P = (FL(e NP)'e" = (B (e \0) 0" — C*VaCPy + 92, @2
Pl’t:T =0,
Vio = (F\ (. M P2)" " = (B (0. 0)" " = (B (9. 0) P = 5= (4.3)

Here we have three unknownse Y,,, P, P € Y. Let us write (4.1)—(4.3) in the form of an operator equtionf. We define
the operatof{ by the successive solution of the following problems:

{%%—F;ww — KN, te0.T) @
iy = 0
~ O — (FL(e ) 6" — (FlaloNe) e = (Fl (o M) = CTaCo, s
¢ ier = 0,
Huw = Viw = (F/(p.)6)" 0" = (B (. )w)" " = (B (. 1) 6" (4.6)

Here)\, ¢ andy* are the solutions of the optimality system (2.8)—(2.10e(¢.1)—(4.3) is equivalent to the following equation
inYy:

Ho— F (4.7)

with the right-hand sidér defined by

aG / * Tk

where¢* is the solution to the adjoint problem:

" ’ * oG
{ ~%r - (Fleyd = 92 te) (4.9)

(;5*|t:T = 0.

It is easily seen that the operathf defined by (4.4)—(4.6) is the Hessian of the original funeaio/ considered on the
optimal solution) of the problem (2.8)—(2.10)7”(\) = H. Under the assumption thét is positive definite, the operator
equation (4.7) is correctly and everywhere solvabl&’in(Vainberg, 1964), i.e. for every§ there exists a unique solution
v ey, and

llvlly, <cllFlly,, ¢=const>0.
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Therefore, under the assumption tH&{(\) is positive definite on the optimal solution, the non-stadgaoblem (3.7)—(3.9)
has a unique solutiof?;, P, € Y, P; € Y.

Based on the above consideration, we can formulate thenfimitpalgorithm to compute the gradient of the response fanct
G:

1) For%—G €Y, 9G ¢y solve the adjoint problem

A dy
00" s _ 0G
O lip = 0
and put
aG / * Lk
7—a+(FA(%/\)) ¢
2) Findv by solving
Hv=F
with the Hessian of the original functiondldefined by (4.4)—(4.6).
3) Solve the direct problem
OB pr(o NP, = Fl(p\v, te(0,T
Ot o\Ps ) 2 = Lp((pa )U7 E( ) ) (4 11)
P2|t:0 = 0.
4) Compute the gradient of the response function as
dG —VCP,. (4.12)
d‘foobs

Remark 1. In the above consideration, to show the solvability, we res@imed that the direct and adjoint tangent linear
problems of the form

9% _FleNé = [, te(0.T)
¢’t:0 =0
¢ lp = 0

with f,g € Y have the unique solutions ¢* € Y.

Formula (4.12) allows us to estimate the sensitivity of tinectionals related to the optimal solution after assinatatwith
respect to observation data. As an application, we conbiglexv a variational data assimilation problem for a seanttogty-
namics model.
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5 Dataassimilation problem for a sea thermodynamics model
Consider the sea thermodynamics problem in the form (Mdrehal., 1987):
T; + (U,Grad)T — Div(ar - Grad T) = fr in D x (tg,t1),

T=Ty,fort=1tyin D,

oT oT
— —_— = onl’ to.t —:Oonrwc t 7t )
i Q s X (to,t1), o e X (to,t1)

_ or  _
U1+ 5= U dp + Qr only,op X (to,11),
n

oT
%ZOOHFHX(to,tl), (5.1)

whereT = T'(z,y, z,t) is an unknown temperature functions (to,t1), (,y,2) € D=Q x (0,H),Q C R?, H = H(z,y) is
the function of the bottom releif) = Q(z,y,t) is the total heat flux) = (u,v,w), ar = diag((ar):), (ar )11 = (ar)22 = pr,
(ar)ss =vr, fr = fr(z,y,z,t) are given functions. The boundary of the domBire: 9D is represented as a union of four
disjoint parts's, I'y op, ['w,e, ', WhereI's = (the unperturbed sea surfacg), ,, is the liquid (open) part of vertical

lateral boundaryl',, . is the solid part of the vertical lateral bounddry; is the sea bottom. The other notations and a detailed

description of the problem statement can be found in Agoskkal. (2008).
Problem (5.1) can be written in the form of an operator equati

Ti+ LT =F+ BQ, te (to,t1),

(5.2)
T= TO; t =to,
where the equality is understood in the weak sense, namely,
(Ty,T) + (LT, T) = F(T) + (BQ,T) VT € W3 (D), (5.3)

in this casel, F, B are defined by the following relations:

(LT, T) = / (—=TDiv(UT))dD + / UHTTdr + / arGrad(T) - Grad(T)dD,

D Tw,op

F(T) = / (QT+U,§—>dT)de+/fodD, (Tt,f):/thdD, (BQ,f):/QﬂZ:OdQ,
D D Q

Tw,op
and the functiongr, Qr, fr, Q are such that equality (5.3) makes sense. The propertié®afderator. were studied by
Agoshkov et al. (2008).

Consider the data assimilation problem for the sea suréampérature (see Agoshkov et al., 2008). Suppose that thgdan
Q € La(2x (to,t1)) is unknown in problem (5.1). Let als,,s(, y, ) be the function o2 = QUOS obtained fort € (to,t1)
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by processing the observation data, and this function iplitgsical sense is an approximation to the surface temperatu
function onf, i.e. toT'

. We suppose th&,,s € La2(£2x (to,t1)), butthe functiorf,,s may not possess greater smoothness
and hence it cannot bzzgsed for the boundary conditiongoe admit the case whéfy,,; is defined only on some subset of
Q x (to,t1) and denote the indicator (characteristic) function of #&sbym,. For definiteness sake, we assume gt is
5 zero outside this subset.

Consider the data assimilation problem for the surface &atpre in the following form: find” and@ such that

T+ LT

f+BQ in D x (t07t1),
T = Ty, t=to (5.4)
1@ = i)

where

t] tl
e 1
1@ =5 [ [10-@paits s [ [mor
to to Q

10 andQ® = Q) (x,y,t) is a given functiong = const > 0.

0 - obs‘2det7 (55)

For . > 0 this variational data assimilation problem has a uniquatsm. The existence of the optimal solution follows
from the classic results of the theory of optimal controllpemns (Lions, 1968), because it is easy to show that theisolut
to problem (5.1) continuously depends on the flpixa priori estimates are valid in the corresponding functional spattes
functionalJ is weakly lower semicontinuous, and the space of admissdn&olsL. (2 x (to,t1)) is weakly compact.

15 For o = 0 the problem does not always have a solution, but, as was shguwgoshkov et al. (2008), there is unique and
dense solvability, which allows one to construct a sequeheegularized solutions minimizing the functional.

The optimality system determining the solution of the folated variational data assimilation problem accordinghe t
necessary conditiograd.J = 0 has the form:

Ti+ LT =F+ BQ in D x (to,tl),

(5.6)
T'=To, t=to,
20
_(T*)t + L*T* = Bmo(TObs — T) in D x (t07t1),
(5.7)
T*=0, t=ty,
(Q—-QW)—T*=0 on Qx (to,t1), (5.8)

whereL* is the operator adjoint té.
25 Here the boundary-value functi@p plays the role of\ from Section 2,» =T, the operato” has the formF'(T,Q) =
—LT+ BQ, andF}. = —L,F(’;) = B. Since the operataF' (7', Q) is bilinear in this case, the Hessi&hacting on some) €
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Lo (2 x (to,t1)) is defined by the successive solution of the following protse

9¢ _
mq;]‘ L¢ = quba te (toatl) (59)
= 0

t=to ’

olog wgx
_ g; ;*L o* = ;Bmoqb, t € (to,t1) (5.10)

t=t; ’

MO (5.11)

To illustrate the above-presented theory, we consider ithielgm of sensitivity of functionals of the optimal soluti@) to
the observation%,,,. Let us introduce the following functional (response fuo}:

G(T) = / dt / k(2. y, )T (2,9,0,)d, (5.12)
to Q

wherek(z,y,t) is a weight function related to the temperature field on tleesseface: = 0. For example, if we are interested
in the mean temperature of a specific region of theuséa » = 0 in the intervalt — 7 < ¢ < ¢, then ask we take the function

1/(TmeSw) if (z,y) €w,t—7<t<t

k(z,y,t) = (5.13)
0 else
where mesv denotes the area of the regionThus, the functional (5.12) is written in the form:
1 / 1
T)== [ dt T t)dQ |. 5.14
=+ [ (meSw/ (29,00 ) (514)

t—7 w
Formula (5.14) represents the mean temperature averagethevtime intervai — = < t < ¢ for a given regionv. The func-
tionals of this type are of most interest in the theory of @imchange (Marchuk, 1995; Marchuk et al., 1996).

In our notations the functional (5.12) may be written as

t
G(T)= /(Bk,T)dt = (Bk,T)y, Y = La(D x (to,t1)).
to

We are interested in the sensitivity of the functio6&Il"), obtained forT" after data assimilation, with respect to the obser-
vation functionT,;,.

By definition, the sensitivity is given by the gradient@fwith respect tdl,p.:

dG oG or
dTobs N oT aCrobs .

(5.15)

Since%g = Bk, then according to the theory presented in Section 4, to cterthe gradient (5.15) we need to perform the
following steps:

10
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1) Fork defined by (5.13) solve the adjoint problem

—%%JrL*qB* = Bk, te(tot) (5.16)
¢* |t:t1 = 0
and putd = B*¢*.
2) Find x by solvingHx = ® with the Hessian defined by (5.9)—(5.11).
3) Solve the direct problem
%“'LPQ = BX, te (to,tl) (5 17)
Pg|t:t0 = 0.
4) Compute the gradient of the response function as
dG
dTObS = TTL()PQ |z:0' (518)

Formula (5.18) allows us to estimate the sensitivity of tingctionals related to the mean temperature after data dessim,
with respect to the observations on the sea surface.

6 Numerical examplefor the Baltic Sea dynamics model

The numerical experiments have been performed using tee-timensional numerical model of the Baltic Sea hydrether
modynamics developed at the INM RAS on the base of the sgjitthethod (Zalesny et al., 2017) and supplied with the
assimilation procedure (Agoshkov et al., 2008) for theazeftemperaturé,;,, with the aim to reconstruct the heat flux@s

The object of simulation is the Baltic Sea water area. Thaipaters of the considered domain and its geographic caiesin
can be described in the following way:grid is 336 x 394 x 25 (the latitude, longitude, and depth, respectively). Trs# fioint
of the "grid C" (Zalesny et al., 2017) has the coordin&d86° E and53.64° N. The mesh sizes im andy are constant and
equal to 0.0625 and 0.03125 degrees. The time st&p is 5 minutes.

The Baltic Sea daily-averaged nighttime surface tempegatata were used fdr,,s. These are the data of the Danish Mete-
orological Institute based on measurements of radiomé¥idRR, AATSR and AMSRE) and spectroradiometers (SEVIRI
and MODIS) (Karagali, 2012). Data interpolation algorithmere used (Zakharova et al., 2013) to convert observations
computational grid of the numerical model of the Baltic Sezrinodynamics. The mean climatic flux obtained from the NCEP
(National Center for Environmental Prediction) reanaysas taken fo€)(©).

Using the hydrothermodynamics model mentioned above,wikisupplied with the assimilation procedure for the swafac
temperaturel,,;,s, we have performed calculations for the Baltic Sea area evtier assimilation algorithm worked only at
certain time moments; in this casef; = to + At. The aim of the experiment was the numerical study of theitheitys of
functionals of the optimal solutio to observation errors in the interv@b, ¢1).

Implementing the assimilation procedure, we consideregstes of form (5.6)—(5.8), where (5.6)—(5.7) mean the finite
dimensional analogues of the corresponding problems (#gnset al., 2008).
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Let us present some results of numerical experiments.

The calculation results fa = 50 hours (600 time steps for the model) are presented id Blgpwing the gradient of the
functionalG(T") defined by (5.14) and related to the mean temperature afi@adaimilation, with respect to the observations
on the sea surface, according to (5.16)— (5.18). HeteQ, 7 = At, t =t;, a = 1075.

0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065

Figure 1. The gradient of the functional(7T")

We can see the sub-areas (in red) in which the functi6iidl) is most sensitive to errors in the observations during assim
ilation. The largest values of the gradient@{1") correspond to the points y lying near the regions with a small depth (cf.
sea topography, Fig.2).

The above studies allow us to solve the problem of the defimitif sea sub-areas in which the functional of the optimal
solution is most sensitive to errors in the observationsdurariational data assimilation, when the error valuesrent apriori

known.

7 Conclusions

In this paper we have considered numerical algorithms tdystine sensitivity of functionals of the optimal solution\afri-
ational data assimilation problem aimed at the reconstmaif unknown parameters of the model. The optimal solution
obtained as a result of assimilation depends on the obsmmgahat may contain uncertainties. Computing the gradién
the functionals with respect to observations reduces teohgion of a non-standard problem which is a coupled sy$tem
volving direct and adjoint equations with mutually depemderiables. Solvability of the non-standard problem lated to
the properties of the Hessian of the original cost functdm.algorithm developed to compute the gradient of the respon
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1 5 10 50 75 100 200 300 400 500 600

Figure 2. Baltic Sea topography [m]

function is based on the second-order adjoint techniqueséyical example for variational data assimilation prabtelated

to sea surface temperature for the Baltic Sea thermodyisanodel demonstrates the result of the gradient computatitire
response function associated with the mean surface tetnperahe presented algorithm may be used to determine the se
sub-areas in which the functionals of the optimal soluticmraost sensitive to errors in the observations during tiarial
data assimilation.
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